ریاضیات عزیز |
سرگذشت ریاضیات 5درایتالیا آثار کاوالیری فصل جدیدی در هندسه بوجود آورد. وی در سال 1629 ایدهآلهای ارشمیدس را تحت عنوان «هندسه غیر قابل تقسیمها» دنبال نمود و در 1635 نیز کتابی به همین نام انتشار داد. طبق نظر او هریک از اجزاء مرتباً تقسیم بدو میشدند و بینهایت کوچک میگردیدند. همچنین اولین جستجوهای مربوط بهحساب بینهایت کوچکها از اوست. در نیمه دوم قرن هفدهم ریاضی بطور دقیق و کنجکاوانهای دنبال شد. سه نابغه فناناپذیر این دوره یعنیاسحاق نیوتنانگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن کرده بودند. اسحاقاسحاق نیوتن روز چهارم ژانویه سال 1643 در وولسی تورپ واقع در ناحیه لینکولشایر متولد شد و در بیستم مارس 1827 در گذشت. وی در هیجده سالگی جزو شاگردان مجانی وارد دانشگاه کمبریج شد و در آنجا ابتدا آثار اقلیدس و سپس هندسه دکارت را مطالعه کرد. در سال 1673 با کتاب هویگنس بنام «درباره نوسان ساعتها» که برای اولینبار اصول مکانیک آسمانی را شامل بود آشنائی یافت. مسلماً این کتاب موجب تقویت افکار او درباره قانون جاذبه گردید و کمکم میخواست او را بستوه آورد. در این هنگام وی تصمیم گرفت افکاری را که تا آنروز در مغز خود محفوظ داشته بود روی کاغذ آورد و بنا بر این از سال 1684 به نوشتن کتاب «اصول» مشغول شد. وی تحت عنوان «حسابفلوکسیونها» روش نوینی برای پیشرفت حساب بینهایتکوچکها ایجاد نمود که باعث ترقی و توسعه علمالقوا یا دینامیک گردید. هویگنس در 14 ماه آوریل 1629در شهر لاهه متولد شد. وی در تکمیل دینامیک و مکانیک استدلالی با اسحاق نیوتن همکاری کرد و عملیات مختلف آنها باعث شد که ارزش واقعی حساب انتگرال در بسط و توسعه علوم دقیقه روشن گردد. همچنین هویگنس دست به اصلاح ساعت زد و به این منظور دنباله تجسسات گالیله را گرفت. در قرن هیجدهم دیگر تمام طوفانهای قرن هفدهم فرو نشست و تحولات این قرن عجیب به یک دوره آرامش مبدل گردید. تمام جهد و کوشش دانشمندان مصروف این میشد تا با وسایل جدید نتایج کشفیات اساسی متقدمین را توسعه دهند. در اوایل این قرن موارد استعمال حساب بینهایت کوچکها در منحنی ها و رویه ها کشف گردید و همچنین حساب احتمالات تکمیل شد، باضافه کشفیات سرشار اسحاق نیوتن درباره مکانیک آسمانی که مدتی بدون انعکاس ماند مخصوصاً به کمک دانشمندان فرانسوی بسط داده شد. دالامبر فرانسوی آنالیز ریاضی را در مکانیک بکار برد و از روشهای آن استفاده کرد و احکامی را که تا آنزمان فقط جنبه استنتاجات هندسی داشت به معادله گذارد ومبنای تمام این بنای عظیم فقط اصل سادهای بود، دالامبر با خود گفته بود: وقتی که جسمی حرکت میکند دلیل برآنست که نیروئی بر آن وارد میشود، بنابراین حتماً مابین این نیروها و تغییراتی که در حرکت ایجاد میشود تساوی یا تعادل وجود دارد، به عبارت دیگر گوئی که جسم با وجود حرکت در حال تعادل است. کلرو رقیب او در 18 سالگی کتابی بنام «تفحصات درباره منحنیهای دوانحنائی» انتشار داد و در مدت شانزده سال رسالهای تهیه و به آکادمی علوم تقدیم نمود که شامل مطالب جالب توجهی مخصوصاً در اطراف مکانیک آسمانی و هندسهبینهایتکوچکها بود.در اواسط این قرن هویگنس و نیوتون درباره معماری نور به موشکافی پرداختند. اسحاق نیوتن در ضمن آزمایشهای خود به این نتیجه رسید که نور سفید تمام انوار مختلف را شامل است وبرای امتحان صحت این موضوع اشعات رنگین مختلف را با هم مخلوط کرد و از مجموعه آنها نور سفید بدست آورد و برای اینکه استدلال خود را قوی سازد دستهای از نور سفید حاصل را روی تیغه باریکی انداخت و یک سلسله حلقههای رنگین بدست آورد که نام حلقههای اسحاق نیوتن روی آنها مانده است. برچسبها: [ یکشنبه 91/1/27 ] [ 11:4 عصر ] [ علی قلاسی ]
[ نظر ]
|